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In  this  paper,  we  propose  the  application  of  a  semi-parametric  statistical  methodology  called  Group-
ynamics
ongitudinal

Based  Developmental  Trajectory  Analysis  to studying  the  dynamics  of  social  networks.  We  begin  with
a  discussion  of  theoretical  problems  in  network  analysis  that  may  benefit  from  this  approach.  Next,  we
describe the  methodology  and  how  it can  be applied  to dyadic  network  data  as  well as  aggregated  node
level data.  We  then  demonstrate  the  methodology  by analyzing  the Newcomb  Fraternity  and  the  van  de
Bunt student  data  sets.  Finally,  we conclude  with  a  discussion  of  potential  directions  for  further  research.
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. Introduction

The repeated interactions of individuals in a social setting create
ocial networks. For example, entering college freshmen become
riends with students in the same dormitory. As time progresses,
ome friendships are stressed and other friendships end. New rela-
ionships also emerge as people take classes across campus, attend
arties that attract members of different social spheres, or are intro-
uced to new acquaintances through their current friends. Many
riendships also endure for long durations of time; a random stu-
ent one meets at a campus-wide icebreaker can remain a close
riend throughout life. These scenarios, describing the temporal
tatus of a relation between two individuals, are trajectories (Nagin,
999; Elder, 1985).

Dyadic trajectories describe only one aspect of network dynam-
cs. Dyadic states also aggregate into measures that describe how
ctors are embedded in the larger network. For example, the in-
egree centrality of an actor, measured by the number of alters
ho nominate him as a friend, quantifies one dimension of how this

ndividual relates to others in the network. Because new ties can be
reated or dissolved, the centrality of individuals in social networks
an also change. Therefore, the sequence of states describing the
entrality of an actor in the social network can also be represented
s a trajectory. Like dyadic trajectories, trajectories of nodal position
re also likely to follow different temporal patterns; one trajec-
ory might depict an individual whose centrality increases over

ime, while another trajectory might depict an individual whose
entrality decreases.

E-mail address: hasan sharique@gsb.stanford.edu

378-8733/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.socnet.2012.04.001
In general, we may be justified in assuming that not all trajecto-
ries are likely to follow the same pattern of emergence, persistence,
and decay. Consider friendship trajectories. Not all friendships per-
sist, nor do they all decay. There are likely to be friendships that
form and endure, other friendships that form and then end, and yet
other potential friendships that never form. Nonetheless, it would
be imprudent to take this logic to the extreme and argue that each
trajectory is idiosyncratic; that is to say that there are no systematic
temporal patterns across observations. It is more likely, however,
that there is a finite set of possible trajectories that sufficiently
describe the temporal evolutions of (friendship) ties. Finding this
set of trajectories in the multi-wave social network data consti-
tutes the first step in applying a trajectory perspective to studying
network dynamics. Doing so allows us to describe the dynamics
of social networks in two  important ways. First, we are able to
describe the shape of trajectories; second, we  are able to quantify
the relative frequency of the trajectories we  observe.

The existence of a finite set of trajectories in the evolving social
network raises a second question: are there systematic differences
in the characteristics of the observations (i.e. dyads or nodes) that
suggest that they are more likely to follow one trajectory rather
than another? With respect to dyadic trajectories, we might ask
whether friendships between individuals who share the same eth-
nicity are more likely to form and survive, rather than form and
then decay. Similarly, for trajectories of nodal position we may
ask whether certain individual characteristics, such as personality
traits, are associated with sustained levels of high centrality over
time, rather than fleeting popularity.

Thus, our task is twofold. First, we  will need to discover in

the multi-wave network data ‘groups’ of dyads or nodes that
follow similar trajectories. Second, we will need to find, when
appropriate, systematic differences in the characteristics of the
observations that predict membership in the different ‘trajectory

dx.doi.org/10.1016/j.socnet.2012.04.001
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
mailto:hasan_sharique@gsb.stanford.edu
dx.doi.org/10.1016/j.socnet.2012.04.001
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roups.’ In this article, we accomplish these two  tasks by apply-
ng a semi-parametric statistical methodology called Group Based
evelopmental Trajectory Analysis (DTA) to multi-wave social
etwork data. This methodology, pioneered by Nagin (1999),  is
ommonly used to study the dynamics of criminal or delinquent
ehavior. The first aspect of the DTA methodology corresponds to
he first task; it segments the panel data into a set of finite ‘groups’
hich show similar patterns in the temporal dynamics of focal

tates and then estimates generalized linear models describing
hese patterns or trajectories. The second aspect of the method-
logy relates characteristics of the observations (dyads or nodes)
o membership in each ‘trajectory group.’

We have organized the remainder of this paper into four sec-
ions. A brief theoretical discussion focusing on the dynamics of
nterpersonal ties and network positions is presented in the first
ection. We  then describe the Developmental Trajectory Analysis
ethodology and provide a discussion of its usefulness for studying

ynamic social networks; several limitations are also outlined. In
he third section, we demonstrate the utility of DTA by applying it
o the classic Newcomb Fraternity data (Newcomb, 1961) and the
an de Bunt student data (Snijders et al., 2010; Van de Bunt et al.,
999). These case studies are intended to demonstrate how DTA
an be used to reveal the dynamics of nodal positions as well as the
ynamics of dyads in social networks. Finally, we conclude by dis-
ussing the implications of using DTA for studying evolving social
etworks.

. Trajectories and network dynamics

Although much of the networks literature has focused on under-
tanding the structure and implications of social networks at the
ross-section, researchers have increasingly begun to study net-
ork dynamics (Snijders and Doreian, 2010). Incorporating the
imension of time in the study of network structure raises sev-
ral theoretical and empirical questions. For example, consider the
ross-sectional study of tie presence and absence. Cross-sectional
esearch suggests that actor similarity or homophily increases the
ikelihood that a tie between two actors is present. Homophily
perates along several dimensions including geographic prox-
mity, ethnicity, age, religion and education (McPherson et al.,
001). Additionally, endogenous structural processes within the
etwork also predict the state of a tie. These processes include reci-
rocity (Carley and Krackhardt, 1996), balance (Doreian et al., 1996;
artwright and Harary, 1956), as well as structural equivalence
White et al., 1976).

By considering time, questions about the causes of tie presence
nd absence can be re-framed as ones of tie creation, mainte-
ance, and decay. To answer these questions, researchers have
eveloped new approaches and analyzed data that yield important

nsights. Most prominent among these approaches is the actor-
ased model of network dynamics (Snijders, 2001; Snijders et al.,
010). Within this modeling framework, the analyst is able to
nderstand both attribute-based (exogenous) and structure-based
endogenous) effects on the dynamics of social networks. Studies
sing this methodology have found support for actor preferences
or same-sex homophily in friendship, dyadic reciprocity, transitiv-
ty, as well as other exogenous and endogenous preferences in tie
ormation in dynamic social networks (Snijders and Doreian, 2010).

The actor-based approach to analyzing longitudinal network
ata provides an important framework for understanding the
echanisms by which actors evaluate their network configura-
ion as well as their subsequent decisions to change it (Snijders
t al., 2010). That is to say, it is particularly useful for understanding
he determinants of tie ‘transitions.’ Yet, understanding how these
ransitions string together to create ‘trajectories’ is an important
 34 (2012) 506– 514 507

area of focus itself (Elder, 1985). A tie trajectory can be conceptual-
ized as a sequence of tie transition decisions embedded in time. In a
network with dichotomous ties, there are four possible transitions:
no tie to a no tie (0 → 0), no tie to a tie (0 → 1), tie to a tie (1 → 1),
and tie to a no tie (1 → 0). While many possible trajectories can
emerge from these transitions, we  may  expect to see only a hand-
ful of actual trajectories in a social network. Assuming an empty
network in the first period, the three possible classes of trajecto-
ries are (a) ‘null trajectories’ where ties never exist, (b) ‘monotonic’
trajectories where tie probability increases or decreases over time,
and (c) ‘non-monotonic’ trajectories where the probability of a tie
increases and then decreases. Within trajectory classes ‘b’ and ‘c’
different variations are possible if the timing of the creation and
deletion transitions are varied.

With this typology in mind, we  can ask two elementary ques-
tions regarding tie trajectories. First, we can ask what classes of
trajectories actually exist; second, we can attempt to quantify the
relative frequency of these trajectories. Both questions are theoret-
ically relevant. While many friendships can be described in terms
of current states (e.g. ‘is a friend’ or ‘is not a friend’) many relations
are described in terms of the experienced dynamic within that rela-
tion. For example, a person can be considered an ‘old friend’ or a
‘new friend’; the first relation may  imply early timing of tie creation
while the second may  imply late timing. Other relations may  be
relegated to categories such as ‘used to be a friend.’ These informal
descriptions of dynamic relations have quantitative counterparts
in the trajectory classes above. The ‘used to be a friend’ category
implies a non-monotonic trajectory where a friendship relation was
created but then it deteriorated after some time. Other mappings
are also possible, and a focus on trajectories as a complement to
transitions may  be useful for answering questions about the exis-
tence and prevalence of certain trajectory classes within different
social settings (e.g. schools vs. firms), different types of relations
(e.g. friendship vs. advice), and periods of time (e.g. weeks vs. years).

Aside from identifying tie trajectories, understanding the char-
acteristics – exogenous and endogenous – associated with each
trajectory class may  also be fruitful. For example, we can ask
whether there are theoretically distinct types of homophily asso-
ciated with monotonic vs. non-monotonic friendship or advice
trajectories. While relating these factors to trajectories in a model-
based framework is outside the scope of this paper, it is still possible
to provide useful descriptions of such correlations.

2.1. Trajectories of nodal positions

Tie trajectories describe the state of a dyadic relation over
time. A second type of trajectory – trajectories of nodal position
– describe the temporal changes in the relative position of a node;
these trajectories may  also be an important focus of study. Social
network researchers have developed several measures of ‘central-
ity’ to quantify the relative position of an actor in a social network.
The measures range from local tie counts (degree centrality) to
more complex measures such as betweenness and closeness that
quantify the degree to which nodes act as bridges or can easily reach
other nodes, respectively. Researchers who study network central-
ity have generally focused on three areas: quantifying positions in
social network structure (see Freeman, 1979, 1977), understanding
the determinants of positions (e.g. Ibarra, 1992) and understanding
the implications of positions for important outcomes such as career
progression or innovation (Burt, 2006).

While most research exploring these questions has been con-
ducted at the cross-section, longitudinal studies are also appearing

in the literature. In a recent paper by Moody et al. (2011) popu-
larity trajectories were studied among samples of students in 28
communities across the United States. The findings suggest that
there is significant change in popularity (in-degree) across the time
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eriod they studied and that these popularity trajectories affected
he likelihood of substance abuse. Similarly, Bendersky and Shah
2010) find different trajectories of status (in-degree) in a sample
f MBA  students and differential impact of such trajectories on per-
ormance. This growing interest in ‘nodal trajectories’ has raised
mportant issues for network theory – namely a conceptualization
f ‘position in social structure’ as dynamic rather than static. It is
herefore possible to ask some basic questions about these trajecto-
ies: what kinds of trajectories exist, how common are they, what
actors predict membership in each trajectory and what are the
ffects of trajectory membership on relevant outcomes.

From a theoretical perspective, the first two questions can be
hought of as temporal extensions to the quantification of central-
ty in static networks. This focus on ‘dynamic positions’ may  be
lluminating for several reasons. The existing research on network
ynamics does seem to suggest intra-individual variability in net-
ork position over time; people’s centrality can increase, decrease

r remain stable. Furthermore, much like we assign social mean-
ng to measures of static centrality (e.g. greater in-degree means
opularity), similar socially descriptive labels can be assigned to
rajectories of nodal positions. Colloquial descriptions of the ‘social
limber’ (low to high) or the ‘tragic hero’ (high to low) are com-
on  labels for trajectories of nodal positions. Such trajectories are
eaningful social descriptions of actors; they may, in fact, be more

nformative about how actors are treated and valued than static
escriptions that focus on only on current or past position in the
ocial network. Moreover, understanding the determinants of these
rajectories as well as their impact on the actions and outcomes of
ctors may  also be theoretically interesting.

In the next section, we provide a brief overview of a semi-
arametric statistical methodology called Group-Based Develop-
ental Trajectory Analysis or DTA (Nagin, 2005, 1999). We  believe

hat DTA is a useful tool for studying the dynamics of social net-
orks. The methodology is presented in this article as a descriptive,

ather than analytic, procedure. Network data has a significant
mount of interdependence across observations and dealing with
his interdependence – temporal and relational – is outside the
cope of this paper. Thus, DTA should be considered a comple-
ent, rather than a substitute, to existing approaches to analyzing

ynamic network data that provide approaches for dealing with
he independence issues inherent in network analysis.

. Developmental trajectory analysis

A ‘developmental trajectory’ models the progression of a state,
ehavior, or action over time Nagin (2005).  Examples of states that
onstitute dyadic tie trajectories are the presence or absence of a
ie, the strength of a tie, or the count of a dyadic event (e.g. email
ent). Likewise, the measurements that constitute trajectories of
odal positions include the centrality of an actor i at periods of
ime t. The Group-Based Developmental Trajectory Analysis (DTA)

ethodology assumes that sample of observations consists of a
ixture of groups that follow a finite set of relatively homoge-

eous trajectories (Nagin, 2005). There are two aspects of the DTA
ethodology. In the first, a set of homogeneous ‘clusters’ or ‘groups’

f trajectories is discovered through a maximum likelihood proce-
ure performed using a general quasi-Newton procedure (Jones
t al., 2001). If covariates describing the observations are available,
he DTA methodology can simultaneously relate characteristics of
bservations to membership in these trajectory groups. DTA has

een applied in various settings; most prominently, it has been
sed to study criminal and aggressive behavior over the life course
Nagin and Tremblay, 1999) as well as the adoption of information
echnology (Zheng et al., 2005).
 34 (2012) 506– 514

The methodology assumes that the researcher has collected data
consisting of temporal sequences of observations for a focal state or
behavior. In network analysis, these observations can be at the level
of the dyad, the node, or the triad. For dyadic observations, denoted
Yijt, i represents the sender, j the receiver, and t the time period in
which the tie exhibits this state such that Yij = {Yij1, . . .,  YijT}. Node
level observations can be denoted as Yit, with i representing the
focal actor and t representing the time period in which the mea-
surement of node position was taken such that Yi = {Yi1, . . .,  YiT}.
Though there are no formal guidelines on the number time periods
required for estimating trajectory models, the minimum number
is clearly two; however, three or more periods are required if one
would like to estimate trajectory models with non-linear terms.

As mentioned earlier, the methodology identifies a set of trajec-
tories in the data and determines the relative frequency of each
of these trajectories. Current implementations of DTA are able
to model trajectories using three distributional assumptions. The
binary logit implementation can be used to model the time varying
dichotomous state of ties; the censored normal, continuous mea-
sures of centrality or tie strength; the zero-inflated Poisson, degree
centrality or interaction counts. We  begin the application of DTA
by specifying the number, denoted as k, of trajectory ‘groups’ we
would like to estimate in the data and the order of the polynomial
degree for each of the k trajectory groups. Nagin (2005, pp. 66–67)
argues that selecting the number of groups is the primary analytic
task and the “choice of the order of the trajectory for each group is
of less importance.” Taking a logit model as our example, we  then
estimate a set of regressions corresponding to each of the k groups:

pk(yijt) = exp(ˇk
0 + ˇk

1T + ˇk
2T2)

1 + exp(ˇk
0 + ˇk

1T + ˇk
2T2)

(1)

Next, we  take the results of this estimation, the pk(yijt), and for
each sequence Yij compute the product over the T time periods,
such that:

Pk(Yij) =
T∏

pk(yijt) (2)

Eq. (2) represents the probability of observing a sequence
of states given their membership in group k. Summing across
all groups we  have the unconditional probability of observing a
sequence Yij, which can be written as P(Yij) =

∑
K�kPk(Yij). Here

the �k represents the proportion of sequences that are classified
into group k. These elements are then combined in the likelihood
function represented by Eq. (3):

L =
N∏ K∑

�kPk(Yij) (3)

Maximizing the likelihood function allows us to estimate the
parameters that represent the relative frequency of each of the tra-
jectory groups and the shape of each trajectory. A parameter, �k, is
estimated which is the proportion of sequences that are categorized
in each group. The second set of estimated parameters is the coef-
ficients on the regression models; in our case, these are the logistic
regressions ˇk

0, ˇk
1, ˇk

2 in Eq. (1).  After estimating the coefficients,
the posterior probability that a sequence Yij belongs in group k can
be estimated using Eq. (4).

P̂(k|Yi) = P̂(Yi|k)�̂k∑K
P̂(Yi|k)�̂k

(4)
As with any clustering procedure, the researcher is required
to a priori select the appropriate number of trajectory groups and
the degree of each polynomial. There are several recommended
approaches for accomplishing this task. From a quantitative
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erspective, the DTA methodology uses the Bayesian Information
riterion (BIC) as the fit statistic. BIC is computed as:

IC = log(L) − 1
2

× log(n) × r (5)

In this formulation, log(L) is log of the maximized likelihood
unction, log(n) is the log of the sample size, and r is the num-
er of parameters in the model; it is recommended that the model
ith the highest score is chosen. In practice, the BIC score is often
ot a sufficient measure for overall model appropriateness; thus,
agin (2005, p. 77) and others recommend a more holistic treat-
ent of model selection. Researchers are urged to apply domain

nderstanding and study goals as additional criteria for selecting
he appropriate trajectory model.

In addition to identifying trajectories, DTA also supports linking
ovariates to trajectory group membership. This is conventionally
one through the use of a multinomial regression model whereby
he probability of group membership is modeled as linear com-
ination of covariates that describe characteristics of each of the
equences. For example, in understanding the factors correlated to
embership in a trajectory of nodal position, the researcher may

e interested in understanding whether males are more likely, as
ompared to females, to belong to one trajectory group rather than
nother. There are also less formal ways of describing the charac-
eristics of trajectory group members. Tables of summary statistics
re often another way of providing such descriptions.

It is perhaps useful to place DTA in the networks literature as
ell as among other latent class approaches in general. In a broader

ense, the DTA methodology is a latent class statistical approach for
ongitudinal data. Cross-sectional latent class approaches already
ave an established place in network analysis; for instance, clas-
ic work on block modeling White et al. (1976) and more recent
atent space approaches for determining groups in cross-sectional
ocial network data are other such examples (Hoff et al., 2002; Davis
nd Carley, 2008). DTA departs from many similar approaches in
etwork analysis because of its focus on identifying groups with a
emporal dimension rather than groups within a cross-section.

The DTA methodology is also similar to more traditional cluster
nalysis methods such as k-means clustering or hierarchical
lustering (Kaufman and Rousseeuw, 1990; Dumenci and Windle,
001). DTA also differs from cluster analysis in two important
espects (Dumenci and Windle, 2001). First, while cluster analysis
an be used to determine temporal trajectories – traditional
lustering approaches, unlike DTA, are agnostic to the temporal
imensions of the data. DTA considers the temporal dimension
y modeling the trajectories as polynomial functions of time. The

ndividual vectors of network observations Yi = {Yi1, . . .,  YiT} to be
lustered are not considered random elements of R

T with inde-
endent components. In the DTA methodology, the components
epend on each other as values of a polynomial at each point in
ime. Second, while clustering approaches may  also find compa-
able groups in the data, the DTA methodology provides a general
ramework for deciding on the number of groups using the BIC,
robabilistically assessing the likely membership of observations

n groups, modeling the shape of each trajectory using different
istributional assumptions, and linking co-variates to group
embership. Furthermore, a study by Dumenci and Windle (2001)

ound that cluster analysis was able to find distinct clusters in longi-
udinal data when there were large differences in the initial values
f trajectories; however, in their analyses cluster analysis was
nable to detect distinct clusters if differences existed in the shapes
f trajectories. This latter difference, is in many ways just as inter-

sting, if not more, than large differences in initial values. However,
n practice, traditional clustering approaches and DTA are often
omparable in the ability to partition the data into distinct groups.
inally, DTA is akin to approaches such as generalized growth
 34 (2012) 506– 514 509

mixture modeling (GGMM)  proposed by Muthen (2001) as well
as the mixture latent Markov models proposed by Vermunt et al.
(2008). Some discussion of the difference between DTA, GGMM
and other trajectory approaches is presented in Nagin (2005).

Although the DTA methodology is useful for describing multi-
wave social network data, there are several important limitations to
consider when interpreting the results. Chief among these are the
independence assumptions in DTA that are known to be violated by
the network data (see for approaches to handling interdependence
in cross-sectional social network data Robins et al., 2007; Dekker
et al., 2007). Specifically, the DTA methodology models temporal
dependence as a polynomial function of time conditional on group
membership. This modeling strategy assumes temporal depen-
dence as a polynomial function of time, but ignores more complex
stochastic dependence over time and dependence between actors.
However, incorporating temporal and structural dependencies will
require a much more complex model. Thus, the results should at
this stage be viewed as descriptions; future extensions should be
expected to help resolve the latter limitations.

In the next section of the paper, we demonstrate the utility of
the DTA methodology for studying the dynamics of social networks.
We present two  case studies: the classic fraternity data of Theodore
Newcomb (Newcomb) and the student data of van de Bunt (VDB)
are re-analyzed. For each of the data sets we  use DTA to study tie
trajectories as well as trajectories of nodal position. For the VDB
data, we  also relate the characteristics of dyads with membership
in trajectory groups for the dyadic tie trajectories.

4. Case studies

In this section, we  present two case studies that apply the Devel-
opmental Trajectory Analysis methodology to multi-wave social
network data. For each case study, we  begin with a description of
the data, followed by the application of DTA to uncovering tie tra-
jectories, and then trajectories of nodal position. We  also attempt to
relate, when possible, characteristics of the observations to mem-
bership in each trajectory group. Since both sets of network data
have been analyzed before, we also compare our results to prior
results when appropriate. We  estimated our models using the
PROCTRAJ procedure implemented in SAS (Jones et al., 2001; Jones
and Nagin, 2007).

4.1. Newcomb’s second fraternity

In our first case study, we  apply DTA to the second series of ‘fra-
ternity’ data collected by Theodore Newcomb (Newcomb, 1961).
The data are a series of fifteen network observations consisting of
mutual rankings by seventeen male students living together at the
University of Michigan. For each time period, denoted t, each of
the seventeen participants, denoted i, rank the remaining sixteen.
A ranking of ‘1’ indicates that ego considers the alter ‘most favor-
able’ whereas a ranking of ‘16’ indicates that the alter is considered
‘least favorable.’ There are no ties in this data. To ease interpre-
tation, we subtracted the original ranking from 17. Thus, higher
rankings imply that the alter is rated favorably; lower rankings,
less favorably.

We  begin the case study by estimating trajectories of nodal
position. For this estimation, we  create a time varying measure
of nodal position by computing the average ranking that each
participant i received from the other sixteen at each point in
time t – denoted Yit. This measure represents a simple measure

of ‘social status’ or ‘popularity’, akin to in-degree for continuous
data. Individuals with the highest score on this measure are rated
more favorably, on average, than their peers. Similarly, individuals
with low scores on this measure are viewed less favorably. We
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sed the censored normal implementation of DTA in this example;
t is most appropriate for modeling continuous data such as the
verage ranking (Nagin, 2005). The methodology, like other clus-
ering approaches, requires the analyst to specify the number of
rajectory groups a priori. We  estimated four models ranging from
1’ group to ‘4’ groups. The two best fitting models were the three
BIC = −409.81) and four group models (BIC = −404.43). The key
ifference between these two models is the split in the ‘middle sta-
us’ group in the four group model; thus, we chose to describe the
esults of the three group model since it provides similar intuition
ith less complexity. The parameter Sigma describes the amount of

ariation in the data explained by the estimated trajectory model.
The results of this estimation are graphically depicted in Fig. 1

nd the estimates of the trajectory model are presented in Table 1.
he vertical axis represents the average ranking received by the
ctors (i.e. status or popularity) and the horizontal axis represents
ime (weeks, in this case). To ease interpretation we have labeled
he three trajectory groups: high status,  middle status,  and low sta-
us. The high status group is represented by the flat line near the top
f the vertical axis; the model for this trajectory has an significant
ntercept with  ̌ = 10.576, but the other terms are indistinguishable
rom zero. The high status group consists of only four individu-
ls; these participants are ranked highly by their peers from the
eginning of the study until the end. Members of this trajectory
roup correspond well to the ‘top block’ in the White et al. (1976)
e-analysis; three of the four men  classified in the high status tra-
ectory are top block members.

More interesting are the trajectories of the middle status and
he low status groups. The direction, magnitude, and significance of
he estimation results in Table 1 suggest that quadratic polynomi-
ls sufficiently describe the shapes of these two trajectory groups.
lthough the high status group is differentiated from the beginning,

he rest of the hierarchy is not. During the first week, members of
he low status and high status groups are indistinguishable in terms
f their average ranking with average rankings of 7.177 and 7.159,
espectively. After the second week, a consensus begins to form
nd middle status and low status groups differentiate; by the sixth
eek a rigid status hierarchy is apparent. Membership in the low

tatus group corresponds well to the ‘bottom block’ of the White
t al. (1976) analysis.

We  also estimated several other node trajectory models with a
arger number of groups. The results are similar: trajectories stabi-
ize at about the 5th or 6th week and the status hierarchy becomes
table. Several aspects of these results are important to consider.
lthough there is variability across individuals in their actual trajec-

ory – there are basically three general trajectory patterns. First, a
ore of high status actors were present since the beginning and they
aintained this status throughout the observation period. Second,

here was no consensus about the membership in the middle and
ower parts of the status distribution in the first week; a consen-
us formed relatively soon thereafter and then hierarchy remained
table. Finally, the absence of an upward sloping trajectory sug-
ests that significant upward mobility was not common in this
etting. Although data limitations prevent us from answering ques-
ions about why such patterns exist in the Newcomb Fraternity,
everal important questions do arise. For instance, what predicts
embership in a trajectory group and are the associated predictors

haracteristics of the individuals, exogenous structural character-
stics, or endogenous structural features of the network?

In addition to estimating nodal trajectory models, we also con-
ucted a second analysis to identify dyadic tie trajectories in the
ewcomb data. We  estimated several models with varying number

f trajectory groups. The best fitting model was a six group model
BIC = −9580.47). The results of this estimation are presented as the

odel in the right column of 1 and graphically depicted in Fig. 2.
he horizontal axis in the figure represents time and the vertical
 34 (2012) 506– 514

axis represents the ranking that an actor j received from actor i. Of
the six trajectories that were identified, two  were relatively sta-
ble throughout the observation period. The ‘low stable’ and ‘high
high’ trajectories consist of ratings where individuals were either
disfavored or looked favorably upon throughout. Two trajectories,
the ‘mid-declining’ and ‘low high’, begin at similar positions with
high initial ratings, however one remains high and the other tends
to decline. The path of these two trajectories may  indicate similar
first impressions, with the ‘low high’ trajectory representing the
impressions remaining favorable and the ‘mid-declining’ being the
impressions that were modified after further interaction. A similar,
though inverted pattern can be seen with the ‘low increasing’ and
‘low declining’ trajectories. Although they begin at similar positions
in the first week, they subsequently diverge. The ‘low increasing’
trajectory with a low initial first impression increases while the
other decreases significantly. In Table 1 we can see that the coeffi-
cient magnitudes and significance levels suggest that the estimated
trajectory model fits the data well.

Application of DTA to the Newcomb data uncovered stable
temporal patterns or trajectories. The results suggest that both
positions within the network as well as dyadic relations may be
classified into ‘types’ that describe their sequence of temporal
states. The presence of these relatively well defined trajectories
suggests possibilities for studying dynamic networks. First, the
presence of trajectories suggest that individual decisions to alter
the state of dyadic ties aggregate into stable dynamic patterns of
nodal position as well as stable temporal relationship patterns.
Whether these trajectories are mere artifacts of myopic decision
making on the part of actors or are viewed as ‘social structures’
themselves is an important question.

4.2. Gerhard van de Bunt’s students

For our second case study, we  apply DTA to the dynamic net-
work data collected by Van de Bunt et al. (1999).  The data consist
of 7 waves of network data for 32 university freshmen. This data
has some amount of missing observations, a common problem with
longitudinal network data. However, because we do not have a
model for the missing data, we have decided to exclude the missing
data from our estimations. Ignoring the missing data often results
in less error in estimates than using simple imputation methods
(Huisman, 2009). The first four temporal observations were col-
lected three weeks apart and the subsequent three observations
were gathered seven weeks apart. In each period, the participants
were asked to indicate the nature of their relationship with the
other students. Six types of responses were possible for each dyad:
best friendship, friendship, friendly relationship, neutral relation-
ship, unknown person, and troubled relationship. We  recoded the
data so that best friendship, friendship and friendly relationship
were coded as ‘1’ and all other relations were coded as ‘0’.

We begin the case study using the VDB data by estimating trajec-
tories of nodal position. Using the re-coded sociomatrix described
above we compute in-degree for all actors i for each of the time
periods t as the sum of the incoming ‘friendship ties’; this time
varying measure of in-degree is denoted as Yit. The measure can be
interpreted as social status or popularity; individuals with higher
in-degree are more popular. It is important to note that unlike the
Newcomb data where the increase in status for one actor necessar-
ily implies a decrease in status for another, this is not the case for
the VDB data since participants are not forced to rank alters without
the possibility of ties.

The results of this estimation are graphically depicted in Fig. 3

and the estimates of the trajectory model are presented in Table 2.
We estimated zero-inflated Poisson models (Nagin, 2005) with
varying number of groups ranging from one to four. The estimation
procedure did not converge for the four group model and produced
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Fig. 1. Trajectories of noda

 group with 0% of the observations for the three group model; thus,
e describe a two group model (BIC = −464.69). The parameters
lpha0 and Alpha1 are coefficients from a logistic regression mod-
ling the zero-inflation for both trajectory groups. The estimates
n Table 2 suggest that the low in-degree trajectory begins some-

here near zero, but there is a significant upward trend. On the
ther hand, the high in-degree trajectory estimation indicates that
hese individuals begin with a low non-zero number of friends but

lso experience an increase in in-degree. The group proportions
ndicate that individuals who are members of the high in-degree
rajectory constitute the majority of individuals (72%) who  begin
ith a few friends but end up with somewhere between six to eight

able 1
rajectory estimates for Newcomb data.

Node position trajectories

Group Parameter Estimate Standard error 

Low status Intercept 7.965 0.480**

Linear −0.844 0.138**

Quadratic 0.038 0.008**

Middle status Intercept 6.871 0.320**

Linear 0.321 0.092**

Quadratic −0.015 0.006*

High status Intercept 10.576 0.480**

Linear 0.122 0.138 

Quadratic −0.005 0.008 

Sigma 1.098 0.050 

Low  status 24% 

Middle status 53% 

High  status 23% 

BIC  −409.81 

N 17  

* p < .05.
** p < .01.
f Survey

ion for the Newcomb data.

friends by the end of the observation period. For the second trajec-
tory group, moderate in-degree (28%), we find a lower starting point
and a lower end point; in the final observation period the in-degree
of this group is approximately four.

We  also estimated dyadic tie trajectories for the VDB data.
For these estimations, the dependent variable was the absence or
presence of a friendship tie; thus, we  use the logistic regression
implementation of DTA. Although we  estimated models with vary-

ing number of trajectory groups, the three group model yielded
the most appropriate estimation when co-variates were included
in the estimation; the BIC for this model was  BIC = −1632.11. These
results are presented in Table 2 and the graphical representation

Dyadic tie trajectories

Group Parameter Estimate Standard error

High/high Intercept 5.279 0.203**

Linear −0.248 0.024**

Low/stable Intercept 3.499 0.746**

Linear 0.349 0.175*

Quadratic −0.011 0.009
Low/increasing Intercept 5.412 0.524**

Linear 0.884 0.121**

Quadratic −0.038 0.007**

Mid/declining Intercept 13.036 0.468**

Linear −1.042 0.160**

Quadratic 0.042 0.010**

Low/high Intercept 10.989 0.310**

Linear 0.408 0.091**

Quadratic −0.019 0.005**

Low/declining Intercept 14.794 0.599**

Linear 0.562 0.169**

Quadratic −0.034 0.010**

2.483 0.029
High/high 19%
Low/stable 18%
Low/increasing 17%
Mid/declining 15%
Low/high 23%
Low/declining 8%

BIC −9617.12
N 272
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s presented in Fig. 4. The horizontal axis represents time and the
ertical axis represents the probability of an i → j tie at time period
. The direction and significance of the trajectory parameter esti-

ates are appropriate for each of the trajectory group polynomials.
he largest trajectory group is the ‘not friends’ trajectory, making
p approximately 75% of all directed dyad sequences in the data.
he next two trajectory groups are the ‘slow friendship’ and ‘fast
riends’ groups, making up 14% and 11% of all dyads, respectively.

The dyadic tie trajectory estimation for the VDB data also linked

o-variates to the probability of group membership. The results for
his estimation are presented in Table 3. We  note that this analysis
s exploratory. Thus, our results should be considered preliminary
nd descriptive at this stage. With these limitations in mind, we find
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the Newcomb data.

two  suggestive effects of exogenous covariates on the likelihood
a dyad will follow a certain trajectory. First, we  find that dyads
where both individuals are male are more likely to be members of
the fast friends trajectory (p ≤ .05). Furthermore, there is a small
effect suggesting that dyads where both members are enrolled in
program 4 are less likely to be in the “not friends” trajectory.

We compared these results to the analysis conducted in Snijders
(2005); their finding suggested that for “female students the value
of a friendship with a male or a female other student is about the

same, while male students have a clear preference for friendships to
other males.” Our results do not contradict this statement – rather
the differential likelihood of a homophilous male dyad to follow the
fast friends trajectory suggests a possible mechanism producing

 5 6 7

 period

n for van de Bunt students.
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Table 2
Trajectory estimates for van de Bunt data.

Node position trajectories Dyadic tie trajectories

Group Parameter Estimate Standard error Group Parameter Estimate Standard error

Low in-degree Intercept −0.05 0.387 Slow friendship Intercept −3.791 0.311**

Linear 0.215 0.066** Linear 0.787 0.07**

High in-degree Intercept 1.287 0.112** Not friends Intercept −6.699 0.805**

Linear 0.104 0.021** Linear 1.113 0.385**

Quadratic −0.093 0.043*

Fast friends Intercept −7.932 1.037**

Linear 5.747 0.766**

Alpha0 5.501 1.603** Quadratic −0.595 0.090**

Alpha1 −4.156 1.354**

Low in-degree 28% Slow friendship 14%
High in-degree 72% Not friends 75%

Fast friends 11%
BIC −464.49  BIC −1632.11
N  32 N 992

* p < .05.
** p < .01.
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Table 3
Multinomial logistic regression predicting membership in trajectory group for VDB
dyadic trajectories.

Parameter Estimate Standard error

Not friends Constant 1.749 0.204
Both in program 2 0.874 1.064
Both in program 3 0.361 0.483
Both in program 4 −0.426 0.257+

Both smokers 0.164 0.343
Both female −0.184 0.251
Both male 1.778 1.325

Fast friends Constant −0.273 0.281
Both in program 2 0.896 1.142
Both in program 3 −0.051 0.675
Both in program 4 −0.367 0.371
Both smokers −0.554 0.54
Both female 0.013 0.353
Both male 2.746 1.375*

* p < .05.
**p < .01.

+ p < .1.
y  perio d 

an de Bunt students.

the earlier results. Although both male and female students may
have equivalent initial propensities to form homophilous ties,
homophilous male ties are more likely to become friends at a faster
rate, and also remain friends throughout the observation period.
Thus, over the entire observation period we would likely observe
more same gender homophily among males than females.

5. Discussion

The intention of this article is twofold. First, we attempted to
outline some problems in network theory that may  benefit from
taking a trajectory perspective. Second, we  demonstrate the appli-
cability of the DTA methodology for studying network dynamics.
The methodology is demonstrated using two  network case stud-
ies: the Newcomb Fraternity and the van de Bunt students. For each

of the case studies we  estimate dyadic tie trajectories, describing
the dynamics of directed relations between actors in a social net-
work, and trajectories of nodal positions, describing the dynamics
of actors’ network positions or centrality.
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While most research examining network dynamics has focused
n transitions – the change in one network state to another (for
xceptions see Moody et al., 2011) – studying trajectories offers

 complementary approach to understanding the temporal dimen-
ions of social structure. The presence of certain trajectories as well
s the absence of others suggests typical temporal patterns of social
tructure at both the dyadic and nodal level. At the level of the dyad,
e find three basic patterns within the data: (1) stable trajectories,

2) monotonically increasing trajectories and (3) monotonically
ecreasing trajectories. Most dyadic trajectories fall within these
ategories. For example, all dyadic trajectories in the Newcomb
ase are either stable (e.g. high/high, low/high, mid/declining,
nd low/stable) or monotonically increasing (low/increasing) or
ecreasing (mid/declining and low/declining). This is not to say,
owever, that non-monotonic trajectories do not exist within the
ata. Rather, their frequency is limited in the data sets we analyze

n this paper.
The application of the DTA methodology to the study of social

etworks helps us make progress towards answering an important
uestion in network theory: “what is the developmental sequence
f network structure over time?” (Granovetter, 1973, p. 1378). We
nd that the trajectory approach is useful for describing, in several
ays, multi-wave network data. In the present study, the applica-

ion of DTA is primarily descriptive and inductive; it can fruitfully
erve as a complement to more formal model-based approaches for
nalyzing dynamic social networks.

At this stage, the trajectory approach is particularly useful for
heory generation; although the possibilities for applying DTA to
roblems in social network analysis are many. The simplest appli-
ation is the use of the methodology for determining the types of
rajectories that are likely to be observed in different social con-
exts and across different types of ties. For instance, how common
re non-monotonic friendship trajectories or other types of trajec-
ories for that matter? Similarly, many interesting questions arise
nce trajectory groups have been determined: are certain types of
omophilous ties more likely to follow one trajectory group rather
han another? To this point, in the case study using the van de
unt data, we find that male same-gender dyads are more likely
o follow the fast friends trajectory. Furthermore, trajectories may
apture important features of social relations beyond the absence
r presence of a tie that could have differential impact on the adop-
ion of innovations, the spread of rumors, or other processes that
nfold over networks.

Although the case studies presented in this article consist of rel-
tively small samples of students, there are opportunities to apply
he methodology to other types of network data. For instance, DTA

ay  in fact be appropriate for analyzing multi-wave ego-network
ata or data from online social networks. The full potential of the
TA methodology in the context of social network analysis has not
een demonstrated in this paper. We  expect that key extensions,
odifications, and applications of the methodology will arise from

he analysis of substantive network questions by scholars studying
hese topics.
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